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Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset 
of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a non-
invasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood.

Methods: Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. 
Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with 
multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to 
develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy 
plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was 
compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility.

Results: In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis 
(CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases 
were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for 
PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for 
PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in 
both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 
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Graphic Abstract

healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC 
plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive 
than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity 
= 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) 
either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001).

Conclusions: The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive 
detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.

Keywords: PDAC, Early detection, Circulating tumour DNA methylation, Methylation haplotype blocks
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Background
Pancreatic ductal adenocarcinoma (PDAC) is widely 
considered one of the most lethal diseases worldwide. 
One main reason for its high mortality rate is the lack 
of effective early detection methods. Early symptoms, 
which typically include abdominal and back pain, diar-
rhea, weight loss and jaundice, are nonspecific for 
PDAC and may be associated with other gastrointestinal 
diseases. This complication is particularly prominent in 
the differential diagnosis between chronic pancreatitis 
(CP) and PDAC [1].

Currently, carbohydrate antigen 19-9 (CA19-9) is the 
most widely used clinical serum marker to detect PDAC, 
and it can reach a sensitivity and specificity of 75–90% in 
symptomatic patients prior to resection [2, 3]. However, 
the low sensitivity in early-stage disease has limited its 
use in early detection protocols. Its practical application 
in early cancer detection is also hampered by false nega-
tives in Lewis-negative individuals (5–10% of the gen-
eral population) [4]. Moreover, several large-population 
studies have demonstrated that CA19-9 is ineffective in 
detecting PDAC in asymptomatic populations due to its 
high false-positive rate in conditions of inflammation and 
nonpancreatic cancers [5, 6]. Endoscopic ultrasound-
guided fine needle aspiration (EUS-FNA) is a commonly 
used method to obtain pathological diagnosis; how-
ever, it is invasive and has been linked to bleeding and/
or tumour dissemination [7]. Therefore, noninvasive and 
more accurate methods to detect early PDAC are highly 
desirable for improving the clinical outcomes of PDAC 
patients.

In recent years, aberrant DNA methylation has been 
proposed as a promising marker for noninvasive cancer 
detection [8]. DNA methylation patterns are profoundly 
altered in the genome of malignant cells during tumouri-
genesis and progression [9]. The epigenetic signatures of 
cancer cells can be utilized to detect circulating tumour 
DNA (ctDNA) molecules in circulating cell-free DNA 
(cfDNA) samples [10], which have been explored to 
develop blood markers for the early screening of PDAC 
[11–17].

To further improve the accuracy and robustness of 
ctDNA methylation markers for early PDAC screening 
from previous studies, we first employed novel methyla-
tion haplotype blocks (MHBs) for marker discovery and 
validation. MHBs are discrete genomic regions that have 
tightly coupled CpG methylation sites (i.e., methylation 
haplotypes) [18] that have been shown to have superior-
ity over methylation on individual CpG sites and were 
screened as PDAC markers in prior studies, with respect 
to both sensitivity and specificity in deconvoluting 
trace amounts of ctDNA from total cfDNA [19]. While 
MHB analyses have been utilized to identify markers for 

noninvasive cancer screening in several cancer types [18, 
19], we were the first to apply it for PDAC marker screen-
ing and testing.

Second, we systematically developed new metrics to 
comprehensively interrogate methylation haplotypes 
as well as unmethylation haplotypes within MHBs (see 
Additional file  1: Supplementary Methods [19–28] for 
details) to enlarge the pool of potential PDAC markers. 
These de novo markers were combined with literature-
based candidate markers to form a highly informative 
marker panel, which was then developed into PDACatch, 
an ultrasensitive targeted methylation sequencing assay 
for detecting ctDNA methylation signatures in blood. 
The PDACatch classifier was built and validated in PDAC 
and control plasma samples and was tested in a single-
blinded manner to confirm its accuracy. It was further 
compared with CA19-9 in the ability to discriminate 
PDAC plasma from healthy controls. Our results showed 
that the PDACatch classifier was more sensitive than 
CA19-9 in detecting plasma of early-stage PDAC, sug-
gesting its potential to be optimized into diagnostics to 
detect PDAC early in blood.

Methods
Participants
All PDAC plasma samples except the test cohort in Phase 
III (Fig.  1) were collected prior to surgery (pancreati-
coduodenectomy or distal pancreatectomy) at the Peking 
Union Medical College Hospital (PUMCH) and Chang-
hai Hospital, Navy Medical University (CHNMU) from 
Oct. 2017 to Oct. 2019. All PDAC tissues and matched 
adjacent nontumour tissues were obtained from surgical 
resection. All PDAC patients were pathologically diag-
nosed using specimens obtained from surgical resection. 
The slides were reviewed by two experienced pathologists 
(H.W. and Z.L.), and the diagnosis was confirmed. CP 
plasma samples were collected from CHNMU from May 
2019 to Sept. 2019. The inclusion criteria for CP patients 
followed the international consensus [29]. Plasma sam-
ples of healthy individuals were collected from PUMHC 
and CHNMU from May 2018 to Sept. 2019. All cohorts 
provided informed consent. Samples of the test cohort 
in Phase III were purchased from ProteoGenex (Ingle-
wood, CA, USA). A few tissue and plasma samples 
were used in two phases (Additional file 2: Fig. S1). This 
project was approved by the PUMHC Ethics Commit-
tee (No. JS-1490) and CHNMU Ethics Committee (No. 
CHEC2020-113).

PDAC patients were staged according to the eighth edi-
tion of the American Joint Committee on Cancer TNM 
Staging System. We defined early PDAC as cases with 
TNM Stage IA, IB, or IIA, which refer to patients without 
lymph node involvement or distant metastasis [30, 31].
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Plasma sample preparation, DNA extraction, RRBS 
and targeted methylation sequencing
All blood samples were collected in cfDNA BCT tubes 
(Streck). Plasma separation and plasma DNA extrac-
tion were performed as previously described (23). Briefly, 
blood samples were centrifuged at 1600×g for 10 min at 4 
°C. The supernatant was transferred and centrifuged again 
at 16,000×g for 10 min at 4 °C, and plasma was collected 
and aliquoted into nuclease-free tubes at −80 °C. Circu-
lating cfDNA was extracted from plasma using a QIAamp 

Circulating Nucleic Acid Kit (Qiagen, 55114) according 
to the manufacturer’s instructions. Tissue samples were 
freshly obtained after surgical resection. Genomic DNA was 
extracted using a DNeasy Blood and Tissue Kit (Qiagen).

Reduced representation bisulfite sequencing (RRBS) 
or targeted methylation sequencing was performed as 
previously described [19, 32]. For each sample, 50–100 
ng of genomic DNA or 20 ng of plasma DNA was used. 
All libraries were paired-end sequenced on Illumina 
platforms for 150 cycles.

Fig. 1 Study flow diagram of four sequential case–control studies for marker discovery and validation
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Methylation haplotype measurements
Candidate methylation haplotype blocks (MHBs) were 
constructed as described previously [19]. The CpG sites 
within each MHB tend to be tightly coregulated on the 
epigenetic status at the level of single DNA molecules. 
We evaluated multiple block-level quantitative met-
rics to identify the most informative measurement for 
each target region. Such metrics included AMF (aver-
age methylation fraction), MHL (methylation haplotype 
load), UMHL (unmethylation haplotype load), MHFm 
(fully methylated haplotype fraction) and MHFu (fully 
unmethylated haplotype fraction).

AMF
AMF was defined as the average methylation level for 
all CpG sites in a specific target region. All detected 
CpG alleles were divided by all methylated CpG alleles 
of the target region

where i represents a CpG site in this target region, M is 
the total number of CpG sites in this target region, NT,i 
represents the number of thymines observed at CpG site 
i and NC,I represents the number of cytosines observed at 
CpG site i.

MHL, MHL3, UMHL and UMHL3
MHL was defined as in Guo et al. [19], which is the nor-
malized fraction of methylated haplotypes at different 
lengths.

where l is the length of haplotypes and P(MHi) is the 
fraction of fully successive methylated CpGs within i loci. 
wi is the weight for the i-locus haplotype. The options for 
weights are wi = i for MHL and wi = i3 for MHL3. Similar 
to MHL and MHL3, UMHL and UMHL3 are the normal-
ized fractions of unmethylated haplotypes at different 
lengths.

MHFm and MHFu
TheMHFm metric was computed for each fully meth-
ylated haplotype over each targeted region using the 
equation:

∑M
i NC ,i

∑M
i

(

NC ,i + NT ,i

)

MHL =

l
i=1 wi × P(MHi)

l
i=1 wi

MHFmi,h =
Ni,h

Ni

where i is the current locus, h is the current haplotype, 
Ni,h is the number of reads at the current locus contain-
ing the current haplotype, and Ni is the total number of 
reads covering the current locus. MHFu is the fraction of 
fully unmethylated haplotypes.

Discovery of de novo markers
Target MHBs of the Phase II panel were selected from 
multiple sources: PDAC tissues vs. healthy plasma, 
PDAC tissues vs. para-tumour tissues, PDAC plasma vs. 
healthy plasma and literature searches.

When comparing the methylation profiles of PDAC 
tissues vs. healthy plasma and PDAC tissues vs. para-
tumour tissues, the analytical process includes marker 
filtering and differentially methylated MHB selection. In 
a library, MHBs with a sequencing depth < 10 were set 
to NA. MHBs with an NA rate greater than 10% in all 
libraries were removed from the analyses. Furthermore, 
MHBs with variations less than 0.02 were removed. After 
filtering, MHBs with FDR-adjusted p values < 0.05 were 
selected.

In PDAC plasma vs. healthy plasma analysis, 20 healthy 
plasma samples were randomly selected to balance cases 
and controls, which was repeated 500 times. In each iter-
ation, the selected 40 samples were randomly split into a 
marker discovery set (15 PDAC, 15 healthy) and a vali-
dation set (5 PDAC, 5 healthy). Differentially methylated 
MHBs were identified in the discovery set with the Wil-
coxon rank sum test FDR < 0.05. A random forest model 
was built with these markers in the discovery set and val-
idated in the validation set. If AUC ≥ 0.75, the identified 
MHBs were kept. MHBs identified over 300 times were 
selected for downstream analysis.

PDAC classifier construction
Regional measurement selection
Methylation markers with low sequencing depth were fil-
tered out. The remaining methylation markers detected 
in ≥ 90% of the training samples were kept for down-
stream analyses.

First, we determined the most discriminative measure-
ments for each marker. For every measurement, a logistic 
regression model was built with one measurement at a 
time for the training samples using the Python package 
statsmodels (0.11.1) as follows:

hθ(x): phenotype;x: measurement; θ0: intercept; θ1: 
coefficient of the measurement.

The p value of θ1 was returned when the model was 
built. Measurements of each individual marker were 

hθ (x) = g
(

θTx
)

=
1

1+ e−(θ0+θ1x)
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ranked based on the p values, and the measurement with 
the smallest p value was selected as a regional measure-
ment to represent the methylation status of the marker.

Incremental feature selection and classifier construction
The number of markers was determined by incremental 
marker selection. After regional measurements of each 
target were selected, missing measurement values were 
imputed with the values of 5 nearest neighbours (KNN). 
The selected values of a marker were then scaled based 
on the median value and the 25–75% interquartile range. 
Then, the training samples were randomly split into 10 
fractions: a support vector machine (SVM) model for 
each marker was built using 9 fractions and tested by the 
remaining 1 fraction. This process was repeated 10 times, 
during which the area under the curve (AUC) was cal-
culated for each test and averaged. Note that we started 
with the marker with the smallest p value.

For a new marker, if its average AUC of the 10 tests did 
not decrease below the average AUC of the previously 
tested marker(s), this marker was included for classifier 
training. After all markers were tested, an SVM classifier 
for PDAC plasma was built using all included markers by 
classifying all training samples and was validated using 
the validation samples (Additional file 2: Fig. S2). Plasma 
samples with CA19-9 level information were selected to 
build a combinatorial classifier integrating the methyla-
tion classifier and serum CA19-9 level.

Statistical analyses
Statistical analyses were performed in R 3.5.0. In Phase 
II, chi-square tests were utilized to test the difference in 
methylation level distribution between the case and con-
trol groups for each marker: values of each marker were 
assigned to 10 windows evenly distributed from 0 to 1 for 
the PDAC and healthy groups. A chi-square contingency 
test was performed to test whether the distribution of 
samples in each window was identical between the PDAC 
and healthy groups. Measurements with the smallest chi-
squared test p value of each target were selected as the 
methylation status of the corresponding target regions. 
Binomial confidence intervals for sensitivity and specific-
ity were calculated using the Clopper-Pearson method. 
To assess whether the difference observed between AUCs 
from the combinatorial model (i.e., CA19-9+PDACatch) 
and the CA19-9 alone model was statistically signifi-
cantly different from 0, we considered a test statistic T 
[(T = AUCCA19-9 − AUCCA19-9+PDACatch)2/(s2 
CA19-9 + s2 PDACatch)] [10], which looks at the differ-
ence in AUC between the two models divided by the sum 
of the variances from the two models. The fact that this 
test statistic followed a χ2 distribution with 1 degree of 
freedom under the null hypothesis was used to calculate 

a resulting p value. A bootstrap percentile confidence 
interval (CI) approach was used to estimate a 95% CI for 
the AUC (1000 times).

Results
Study design and sample description
This study utilized a total of 90 tissues (52 PDAC 
tumours, 38 matched para-tumour tissues) and 546 
plasma samples (198 PDAC, 25 CP and 323 healthy con-
trols) to sequentially develop a PDACatch assay (Fig.  1, 
Additional file  2: Fig. S1, Tables  1 and 2). PDAC sam-
ples were collected from 232 PDAC patients (18 PDAC 
patients provided both tissue and plasma samples). 
Among 223 PDAC patients with known stage informa-
tion, 43/119/38/23 cases were Stage I/II/III/IV (Addi-
tional file 2: Fig. S2A). In Phase I, we discovered de novo 
PDAC-specific markers by analysing the genomic DNA 
methylation profiles of PDAC tumours, normal tissues 
and plasma samples using the RRBS method [19]. In 
Phase II, markers were tested in additional tissue and 
plasma samples for their PDAC-discriminating accuracy. 
The most informative markers were selected to develop 
a targeted sequencing assay, PDACatch. In Phase III, 
PDAC classifiers were built and validated in 199 plasma 
samples to separate PDAC patients from healthy indi-
viduals or CP patients. Furthermore, we conducted a 
single-blinded test of the PDACatch classifier using an 
independent cohort of PDAC plasma and healthy con-
trols. In Phase IV, we compared PDACatch and CA19-9’s 
performances in classifying PDAC plasma and explored 
an integrated classifier to further improve the accuracy. 
Note that a small number of tissue and plasma samples 
were shared in multiple phases of this study (see details 
in the relevant “Results” sections).

Discovery of PDAC‑specific methylation markers in tissue 
and plasma
We searched predefined methylation haplotype blocks 
(MHBs) for de novo PDAC-specific DNA methylation 
markers by first profiling the methylation patterns of 46 
PDAC tumours, 28 para-tumour tissues and 143 plasma 
samples (20 PDAC, 123 healthy) using RRBS (Table 1). 
Multiple MHB-specific metrics (see the “Methylation 
haplotype measurements” section for details) were 
used to quantify methylation levels to identify MHBs 
containing PDAC-specific methylation haplotypes as 
markers via PDAC tissue group vs. para-tumour tis-
sue group (T2T), PDAC tissue vs. healthy plasma (T2P) 
and PDAC plasma vs. healthy plasma (P2P) compari-
sons (Fig. 2A). The first set of 76 markers was yielded by 
intersecting the 1870 T2P markers and 700 T2T mark-
ers (Wilcoxon rank sum test, Benjamini and Hochberg 
FDR <0.05). The second set comprised 42 T2T markers 
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located within −1500 to +1000 bp of the transcription 
start sites of 819 genes exhibiting aberrant methylation 
changes in PDAC tissues or plasma [21–24]. The third 
set of 53 markers was selected from P2P markers via a 
model-based cross-validation marker selection process 
using an AUC value of over 0.75 as the cut-off for quali-
fied markers. In total, 171 de novo markers were com-
piled for downstream analysis.

Gene set enrichment analysis (GSEA) of these de novo 
MHBs revealed that multiple cancer-related pathways or 
biological processes were enriched in their associated genes 
(FDR < 0.05, Fig. 3A, B and Additional file 3: Table S1) [33], 
including 7 MsigDB hallmark pathways known to be dysreg-
ulated in PDAC (Fig. 3B) [23, 34]. Furthermore, the PDAC 
marker genes previously published in the literature were 
also highly enriched in our top marker-associated genes 
(hypergeometric test, Additional file  4: Table  S2) [21–24]. 
These results strongly supported that the de novo markers 
we selected are involved in PDAC carcinogenesis.

Marker optimization and PDACatch assay development
In Phase II, we further reduced the number of PDAC 
markers to minimize model overfitting caused by the 
imbalance of hundreds of features and limited samples. 
To this end, all the selected markers were integrated with 

the PanSeer assay [32], and their separation power was 
validated. PanSeer is a targeted methylation sequencing 
assay that is highly sensitive for detecting early-stage can-
cer signals in blood. It is also readily customized for dif-
ferent sets of targets, making it versatile for investigating 
different types of cancers.

A combination of the PDAC de novo markers with the 
PanSeer markers formed a starting set of 750 markers for 
further testing (Fig. 2B). We filtered them by using them 
to discriminate PDAC tumours from para-tumour tissues 
(N = 27 and 17, respectively). Among them, 21 PDAC 
and 7 para-tumour tissues were previously used in Phase 
I. They were reused in Phase II to confirm that RRBS-
discovered markers can also be consistently detected by 
targeted methylation sequencing. The top 200 most dis-
criminating markers (p < 0.05, Wilcoxon rank sum test) 
were selected and preliminarily filtered based on their 
ability to classify PDAC and healthy plasma (N = 29 and 
55, respectively) via cross-validation (Fig.  2C) and the 
distribution of their methylation haplotype measure-
ments in these samples (chi-square test, p < 0.01). The 
185 most significant markers were chosen to develop the 
final version of the PDACatch assay to detect the PDAC 
marker signature in blood.

Model building and evaluation of the PDACatch classifier 
for early PDAC detection
We then sought to develop a PDAC early detection classi-
fier to separate PDAC plasma from healthy controls by the 
PDACatch assay. To this end, 94 PDAC and 80 healthy sam-
ples, which were age- and sex-matched, were randomly split 
into a training set and a validation set at a 2:1 ratio (Fig. 1 
and Table  1). The training set included 19 PDAC plasma 
samples that were previously tested in Phase II and had suf-
ficient remaining cfDNA. This was to increase the size of 
the training set to improve the trained classifier’s robust-
ness; however, no samples were reused in validation to 
prevent biasing the validation results. Using training sam-
ples, the 56 most discriminatory markers for PDAC were 
identified by 10-fold cross-validation incremental feature 
selection (Additional file  2: Fig. S3 and Additional file  5: 
Table S3) to build an SVM-based classifier with a high AUC 
of 0.93 in the training set (sensitivity = 71%, specificity = 
91%) (Fig. 4A). The PDACatch classifier was then validated 
in the left-out validation set and achieved a similar AUC of 
0.91 (sensitivity = 84%, specificity = 89%) using the same 
cut-off as in the training set, demonstrating its consistency 
and robustness (Fig. 4A, B). Covariant analysis also showed 
that the PDACatch classifier was independent of age, sex, 
tumour location and size (Fig. 4C–F).

Genes associated with the 56 markers of this classifier 
were annotated and a number of cancer-related genes 

Table 2 Demographic and clinicopathological features of the 
study cohorts in Phase IV

Pathology Plasma

PDAC Healthy

Sample size 92 37

Age (years)
 Median 63.1 51.1

 Range 35–80 18–79

Sex: male/female 56/36 15/22

Stage
 I 25 -

 II 44 -

 III/IV 23 -

 N/A 0 -

Tumour size (cm)
 Median 3.0 -

 Range 1–8 -

CA19‑9 (U/ml)
 Median 471.5 4.2

 Range 21.13–1200 1–9.57

 >37 15 0
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or gene families were identified, including HOX fam-
ily [35] and TBX family [35, 36] members (Additional 
file  5: Table  S3). Several have been proposed for the 
detection of PDAC or other cancers in blood, including 
BCAN, IKZF1, TBX15, BNC1 and SHOX2 [17, 21, 32, 
37, 38]. Gene Ontology (GO) analyses showed signifi-
cantly enriched molecular function categories for DNA 
binding or transcription factor activity (Fig. 3E). It may 
be worth exploring whether these transcription factors 
have regulatory roles in PDAC carcinogenesis.

While testing CP samples, we found that the PDA-
Catch classifier showed limited accuracy in stratifying 

CP from PDAC. We then rebuilt an SVM-based classi-
fier to separate PDAC from CP plasma, which achieved 
an AUC of 0.85 for samples in the validation set (Addi-
tional file  2: Fig. S4A). This PDAC-CP classifier exhib-
ited a consistent accuracy for PDAC across all stages 
(Additional file  2: Fig. S4B) with no significant covari-
ate differences (Additional file  2: Fig. S4C-F). Although 
the limited CP samples likely have reduced performance 
during validation, the results did suggest potentially 
great feasibility in differentiating PDAC from CP using 
ctDNA methylation as markers to reduce misdiagnosis 
due to the lack of discriminatory symptoms.

Fig. 2 A PDAC-specific markers were discovered by T2T, T2P and P2P comparisons separately and then intersected and combined, as depicted 
in the figure. B Unsupervised hierarchical clustering of PDAC and para-tumour tissues based on their methylation measurements of the 750 
assembled markers, which were ordered along the Y axis of the heatmap. C The receiver operating characteristic (ROC) curve of an SVM model built 
by using the 200 most discriminatory markers to cross-validate Phase II plasma samples
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Fig. 3 A, B Top 10 GO biological processes (A) and the 7 MSigDB hallmark cancer-related pathways (B) identified by GSEA that were enriched in 
the genes associated with the 171 de novo PDAC-specific markers. C–E Significantly enriched functional categories of genes associated with the 56 
markers in the final PDACatch classifier, as identified by GO analysis. C Biological processes (top 20). D Cellular component. E Molecular function
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Comparison of the PDACatch classifier with serum CA19‑9 
levels
As mentioned earlier, serum CA19-9 is commonly used 
as a blood marker to stratify PDAC risk. Thus, it is nec-
essary to compare the performance of the PDACatch 

classifier with CA19-9 in all samples with available test 
results for CA19-9 to assess PDACatch’s clinical utility 
and significance.

We compared the classification accuracy by PDACatch 
and CA19-9 on all 92 PDAC and 37 healthy cases with 

Fig. 4 Performance of the PDACatch classifier in differentiating PDAC from healthy plasma and covariate analysis of the PDACatch classifier. A ROC 
curve of the PDACatch classifier distinguishing PDAC and healthy plasma in the training and validation cohorts. B The PDACatch classifier scores 
across different types of samples. In Panel B, samples were labelled with cohorts (Training/Validation), pathological types (H: Healthy; CP: chronic 
pancreatitis) and stages (I, II, I-IIA and IIB-IV). During covariate analysis, PDACatch scores of PDAC and healthy plasma samples were grouped by sex 
(C), age (D), tumour size (E) and tumour location (F). In E, brackets and parentheses indicate inclusion and exclusion of size, respectively. Wilcoxon 
rank sum test: ns, not significant (0.05 < p ≤ 1.0); *: 0.01 < p ≤ 0.5; **: 0.001e−03 < p ≤ 0.01; ***: 0.0001 < p ≤ 0.001; ****: p ≤ 0.0001
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Fig. 5 Independent test of the PDACatch classifier and its comparison and integration with CA19-9. A ROC curves of CA19-9, PDACatch and the 
combined classifier in differentiating PDAC and healthy controls in the training and validation sets. B Comparison of the sensitivities of CA19-9, 
PDACatch and the combinatorial classifier in classifying PDAC of different stages. The specificity was fixed at 89%. Error bars: 95% CI of sensitivity. 
C ROC curve of the PDACatch classifier on the independent test samples. D Comparison of the sensitivity of PDACatch and CA19-9 in detecting 
CA19-9-negative PDAC cases in the study cohorts. Note that the specificity was of the entire cohort by the classifier. E Predicted probability scores 
for noncancerous cases (n = 37) and Stage I (n = 25), Stage II (n = 44), Stage III (n = 18) and Stage IV (n =5). The same samples were also tested for 
CA19-9 levels. Orange dots show the CA19-9-positive cases (>37 U/ml), and blue dots show CA19-9-negative cases (≤37 U/ml)
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known CA19-9 levels from the training and validation 
samples of Phase III (Fig. 1 and Table 2) and found that 
on balance, PDACatch was modestly more accurate than 
CA19-9, as demonstrated by the fact that PDACatch has 
a higher, or at least an equal, AUC score than CA19-9 for 
PDAC of each stage (Fig.  5A and Table  3). Importantly, 
PDACatch was more sensitive in detecting Stage I (sen-
sitivity = 80 and 68% for PDACatch and CA19-9, respec-
tively, Additional file  2: Fig. S5) or early-stage (I-IIa) 
PDAC plasma than CA19-9 (sensitivity = 76 and 70% for 
PDACatch and CA19-9, respectively). Note that in this 
comparison, PDACatch and CA19-9 had the same speci-
ficity of 89%. These results indicate that PDACatch may 
be more advantageous in detecting early PDAC cases 
than CA19-9.

Additionally, because 5~10% of PDAC cases do not 
have elevated CA19-9 levels due to genetic background 
[39], we specifically evaluated whether PDACatch can 
accurately detect PDAC cases considered to be nega-
tive in the CA19-9 test (termed CA19-9-negative cases, 
defined as CA19-9 levels lower than 37 U/ml, N = 21) 
from healthy controls (N = 33). Indeed, it correctly iden-
tified 13 out of 21 CA19-9-negative PDAC cases in the 
training and validation cohorts (sensitivity =54, 75 and 
62% for the training, validation and combined cohorts, 
respectively) at a specificity of 91% (Fig.  5D and Addi-
tional file  2: Fig. S4A). Taken together, PDACatch not 
only outperformed CA19-9 in detecting early-stage 
PDAC patients but also accurately identified CA19-
9-negative PDAC cases.

Lastly, we explored integrating CA19-9 with the PDA-
Catch classifier to potentially maximize the model accu-
racy. To this end, we used cases from the training and 
validation sets for PDACatch that had known CA19-9 
levels for the combinatorial model’s training (23 healthy, 

62 PDAC) and validation (14 healthy, 31 PDAC), respec-
tively. The combinatory classifier was trained by logistic 
regression and achieved an AUC of 0.93 (sensitivity = 
82%, specificity = 87%); in validation, it achieved an AUC 
score of 0.96 (sensitivity = 94%, specificity = 93%), which 
was higher than either parental classifier (0.87 and 0.90 
for CA19-9 and PDACatch, respectively) in classifying 
the same validation samples (Fig. 5, Table 3).

Because the combinatorial classifier had consistent 
performances in both training and validation cohorts, we 
further compared the combinatorial classifier’s perfor-
mances with CA19-9 in classifying all the cases of these 2 
cohorts. Indeed, the combinatorial classifier had an AUC 
of 0.94, higher than CA19-9 (AUC = 0.89, Fig. 5A–E and 
Table 3). Additionally, it was more sensitive than CA19-9 
when classifying Stage I (sensitivity = 92 and 68% for the 
combinatorial classifier and CA19-9, respectively, p < 
0.05, McNemar’s test, Additional file 2: Fig. S5) or early-
stage PDAC plasma (I-IIa) (sensitivity = 88 and 70% for 
the combinatorial classifier and CA19-9, respectively, p 
< 0.05, McNemar’s test, Additional file 2: Fig. S6). These 
results suggest that early detection of PDAC may be 
improved by combining PDACatch and CA19-9.

Independent test of the PDACatch classifier to distinguish 
PDAC and healthy plasma samples
To independently verify the PDACatch classifier’s util-
ity in classifying PDAC plasma, we conducted a single-
blinded classification on a cohort of preoperative PDAC 
(N = 74) plasma samples and healthy controls (N = 
65, Fig.  1 and Table  1) obtained from ProteoGenex, a 
biobank in the USA. The PDACatch assay was performed 
on these samples, and the same classifier and cut-off were 
applied to label these samples as PDAC or normal.

Table 3 Performance of PDACatch, CA 19-9 and the combined model to classify all cases of the training and validation sets that have 
CA19-9 levels (bootstrapped 1000 repetitions at 95% CIs)

p values were calculated by the DeLong test

PDAC pancreatic ductal adenocarcinoma, CA19-9 carbohydrate antigen 19-9, CI confidence interval
a Two PDAC cases had no stage information

PDACatch CA19‑9 Combined: PDACatch + CA19‑9

PDAC AUC (CI) Sensitivity (CI) AUC (CI) Sensitivity (CI) AUC (CI) Sensitivity (CI) pvalue for AUC 
I:N=25 0.92 (0.85–0.97) 0.8 (0.59–0.93) 0.85 (0.75–0.93) 0.68 (0.46–0.85) 0.93 (0.88–0.98) 0.92 (0.74–0.99) 1.61E−06

II:N=44 0.88 (0.81–0.93) 0.68 (0.52–0.81) 0.88 (0.81–0.94) 0.75 (0.6–0.87) 0.92 (0.87–0.96) 0.77 (0.62–0.89) 5.42E−05

I/IIA:N=34 0.91 (0.84–0.96) 0.76 (0.59–0.89) 0.86 (0.78–0.93) 0.71 (0.53–0.85) 0.92 (0.86–0.97) 0.88 (0.73–0.97) 2.61E−05

I/II:N=69 0.89 (0.83–0.94) 0.72 (0.6–0.83) 0.87 (0.8–0.92) 0.72 (0.6–0.83) 0.93 (0.88–0.97) 0.83 (0.72–0.91) 1.59E−07

III/IV:N= 23 0.94 (0.89–0.98) 0.87 (0.66–0.97) 0.94 (0.88–0.99) 0.91 (0.72–0.99) 0.97 (0.93–0.99) 0.96 (0.78–1) 6.02E−06

All stages:N=92a 0.91 (0.85–0.95) 0.76 (0.66–0.84) 0.89 (0.83–0.94) 0.77 (0.67–0.85) 0.94 (0.89–0.97) 0.86 (0.77–0.92) 1.00E−07

Specificity (CI) Specificity (CI) Specificity (CI)
Healthy:N=37 0.89 (0.75–0.97) 0.89 (0.75–0.97) 0.89 (0.75–0.97)
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The results showed that for the blind-test cohort, PDA-
Catch achieved an AUC of 0.91 (sensitivity = 82%, speci-
ficity = 88%, Fig. 5C) in classifying PDAC cases, reaching 
a degree of accuracy that was essentially identical to that 
of the validation cohort (AUC = 0.91, sensitivity = 84%, 
specificity = 89%), further confirming its robustness and 
consistency. Stagewise, PDACatch detected early-stage 
PDAC (I-IIa) at a sensitivity of 80% and advanced-stage 
PDAC (IIb and above) at 83%, both of which were also 
consistent with the results of the validation cohort.

Importantly, PDACatch correctly identified all 7 CA19-
9-negative PDAC samples in this cohort, achieving a sen-
sitivity of 100% (Fig. 5D). While the number of such cases 
was relatively small in this cohort (22 of the 74 PDAC 
samples had serum CA19-9 levels measured), combined 
with the results of the same test on CA19-9-negative 
cases of the training and validation cohorts, it nonethe-
less demonstrated the PDACatch classifier’s consistent 
accuracy at detecting CA19-9-negative PDAC cases. 
Taken together, we found that the PDACatch classifier 
performed consistently in classifying PDAC plasma in 
the independent blind-test cohort as it did in the train-
ing and validation cohorts, confirming its robustness and 
utility for the noninvasive detection of PDAC in blood.

Discussion
In this study, we investigated PDAC and control tissues 
and plasma to sequentially discover, develop, validate 
and test ctDNA methylation signatures for early PDAC 
detection. Methylation haplotype-based analyses were 
performed in the marker discovery phase to improve the 
specificity and robustness. PDACatch, a highly sensitive 
targeted methylation sequencing assay, was developed to 
integrate the most discriminating markers for PDAC. The 
56-marker PDACatch classifier was built and performed 
better than CA19-9 in detecting early-stage PDAC and 
CA19-9-negative cases at high specificity. Most impor-
tantly, the PDACatch classifier was confirmed in an inde-
pendent test to accurately classify PDAC plasma from 
healthy controls.

Taken together, these results are another step for-
ward to achieving accurate detection of early PDAC 
using blood specimens, which is arguably the most 
cost-effective approach to reducing the high mortality 
rate of PDAC [40]. Neither imaging modalities nor non-
CA19-9 serum markers have sufficient efficacy to detect 
early-stage PDAC [41]. Recently, ctDNA methylation 
has shown great potential as a blood marker to detect 
PDAC in its early stages [17]. Our results supported this 
notion, as both PDACatch-based classifiers achieved a 
high degree of sensitivity for early-stage PDAC plasma 
(76~82%), which is comparable to a recent multicancer 

early screening study’s results that also used DNA meth-
ylation changes as blood markers for cancers [42]. We 
further demonstrated that methylation markers can be 
combined with CA19-9 to maximize the overall accuracy, 
especially for CA19-9-negative PDAC cases that lack 
Lewis antigens and/or have early-stage disease [43]. This 
finding is especially meaningful to improve the diagnos-
tic and prognostic stratification of PDAC patients.

During de novo marker discovery, we analysed MHBs 
of tissues and plasma to identify candidate ctDNA mark-
ers for PDAC in addition to AMF. When the methylation 
haplotype was first introduced, only comethylation was 
quantified (i.e., by the MHL measurement) [19], which 
limits the number of identified methylation markers. In 
this study, to increase the size of potential PDAC plasma 
markers, we expanded the analysis to include co-unmeth-
ylation by the UMHL measurement. We also explored 
weighing the length of the haplotype with an exponent 
of 3 in the MHL3 and UMHL3 measurements instead 
of just 1 in MHL and UMH to utilize the density of CpG 
sites in marker discovery. Finally, we specifically analysed 
whether the fully methylated (MHFm) or unmethylated 
(MHFu) haplotype was differentially expressed between 
PDAC samples and their controls.

Admittedly, applying the new measurement did 
increase the complexity in marker selection and mod-
eling. However, PDACatch performed with notably 
high accuracy and consistency in all study cohorts that 
included both Chinese and non-Chinese populations, 
proving that a model incorporating these new types of 
methylation haplotypes can be stable and robust for pop-
ulations of diverse genetic and epigenetic backgrounds, 
in addition to having more potential markers to choose 
from for model development. Practically, because the 
new measurements such as UMHL were all developed 
using a principle or formula similar to that of MHL, they 
can be easily implemented by researchers who are rea-
sonably well-versed with MHL.

In addition to diagnostic, monitoring and prognostic 
applications [44, 45], ctDNA methylation has been inves-
tigated in recent years as a possible early detection bio-
marker in PDAC [17, 46–49]. Most of these studies were 
based on relatively small sample sizes and evaluated indi-
vidual differentially methylated CpG sites or genes, which 
were typically selected from literature searches or by in 
silico prediction and might not be able to capture the 
complex biology of PDAC. In the present study, we con-
ducted a comprehensive discovery and validation process 
in four sequential phases: (1) biomarker discovery; (2) 
assay development; (3) training, validation and testing; 
and (4) assay integration. Our classifier was trained and 
validated in a relatively large Chinese cohort and tested 
in an independent dataset of Caucasian individuals. 
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ductal adenocarcinoma; PUMCH: Peking Union Medical College Hospital; 
ROC: Receiver operating characteristic; RRBS: Reduced representation 
bisulfite sequencing; SVM: Support vector machine; UMHL: Unmethylation 
haplotype load.
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Early-stage and CA19-9-negative cases, two important 
target groups for the early detection of PDAC, were ana-
lysed separately. Moreover, MHBs rather than individual 
CpGs were analysed for marker discovery, during which 
novel metrics quantifying the methylation status of 
MHBs were used to obtain the most representative meas-
urement to identify differentially methylated MHBs.

Several limitations should be acknowledged. Our 
preliminary results from using methylation markers 
to differentiate PDAC plasma from CP were encourag-
ing. However, they need to be further validated using a 
larger number of CP samples. The sample sizes of sev-
eral key categories of cases, namely, Stage I and CA19-
9-negative PDAC, were also limited (Additional file  2: 
Fig. S2). In addition to the high cost and complex-
ity, ctDNA tests likely suffer from the same problems 
of insufficient sensitivity and specificity as traditional 
biomarkers when applied to population screening and 
early cancer diagnosis, given that the fraction of ctDNA 
was extremely small in total plasma DNA in early-
stage tumours [50]. Although our test demonstrated 
improved accuracy using PDACatch over CA19-9 for 
early-stage PDAC, its sensitivity and specificity are still 
not good enough for early detection or screening pur-
poses in PDAC and need further improvement. Last, a 
considerable number of PDAC patients with advanced-
stage disease were included in our cohorts, which 
might overestimate PDACatch’s sensitivity. The effec-
tiveness of the PDACatch assay in early PDAC detec-
tion needs further evaluation in a large multicentre 
prospective study.

Conclusions
In summary, we conducted a de novo genome-wide 
screening using methylation haplotype-based analyses 
for PDAC-specific DNA methylation markers, and built 
a PDACatch classifier for early PDAC detection. Despite 
the limitations mentioned above, we believe that our 
study is an important step forward in reaching the goal of 
accurately noninvasively detecting early-stage PDAC to 
reduce the high mortality rate of PDAC. It will not only 
benefit early PDAC detection, but its methodology and 
analyses may play the foundation to develop DNA meth-
ylation-based diagnostics for other cancers.
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